The Flat Earth Wiki
The Flat Earth Wiki
Log in

Difference between revisions of "Ring Laser Gyroscope"

From The Flat Earth Wiki
(369 intermediate revisions by 2 users not shown)
Line 1: Line 1:
The '''Ring Laser Gyroscope''' is a type of gyroscope that is based on laser beams which move around a cavity. The principle of operation of a RLG is based on the Sagnac Effect, which was famed for showing that light changes velocity on a rotating platform. The changing velocity of light as seen in the RLG and Sagnac Experiments is said to be contrary to the consistency of light as proposed by Special Relativity (See the [[Michelson-Morley Experiment]] and [[Sagnac Experiment]]).  
+
The '''Ring Laser Gyroscope (RLG)''' is a consumer device version of the [[Michelson-Gale-Pearson Experiment]] (MGP)<sup>[https://wiki.tfes.org/Ring_Laser_Gyroscope#Ring_Interferometer]</sup>. The principle of operation of these devices is based on the [[Sagnac Experiment|Sagnac Effect]], which was famed for showing that light changes velocity on a rotating platform. In the RLG and MGP experiment the Earth is used as the 'rotating platform'. Like with the Michelson-Gale-Pearson Experiment, some have alleged that Ring Laser Gyroscopes have detected the rotation of the earth.
  
In the Ring Laser Gyroscope two counter-propagating laser beams are shown to have different frequencies with the difference dependent on rotation rate. Measurements of this difference provides the rotation angle or rotation rate about the RLG's sensitive axis.  
+
From a work titled [http://www.aetherometry.com/publications/direct/AToS/AS3-I.2.pdf The Sagnac and Michelson-Gale-Pearson Experiments] ([https://web.archive.org/web/20170702190257/http://www.aetherometry.com/publications/direct/AToS/AS3-I.2.pdf Archive]) by Dr. Paulo N. Correa we read on p.5:
  
Some have alleged that Ring Laser Gyroscopes have detected the rotation of the earth. When assessing these claims closer, it is found that modern Ring Laser Gyroscopes are very sensitive devices which are often double-purposed as seismometers. These sensitive devices are interpreting patterns in the background microseismic noise as the earth's rotation.
+
{{cite|The outcome of the MGP experiment was ambiguous, though maybe no more ambiguous than the small persistent positive shift observed in MM experiments. Composed of 269 separate tests with readings that '''varied from -0.04 to +0.55 of a fringe''', and a mean at +0.26 fringes, the MGP experiment could be interpreted to yield a positive result of ≈ 0.3 km/s - therefore near the speed of the earth's rotation, but the result was of borderline significance. It could be said that the experiment was inconclusive because it adduced neither proof that there was a shift in the phase of the light beams, nor that there wasn't one.}}
  
==The Earth Line==
+
Essentially the tests saw wild results. There was almost no change to light's velocity in one test, and then a lot of change in another test. It is perplexing that the rotation of the earth would start and stop when tested at different times. Only through the statistics was it claimed that the experiment saw the rotation of the earth. The inconsistent results were ambiguous in nature and could offer no evidence of the shift in the phase of the light beams. As stated above, the results of the Michelson-Gale-Pearson experiment were inconsistent and an algorithm was applied to get the desired result. If we are to say that the Ring Laser Gyroscope is the same device, then the same criticism would apply.
  
'''Strapdown Inertial Navigation Technology'''<br>
+
It is further seen that, like the original MGP experiment, the raw results of the gyroscopes are inconsistent<sup>[https://wiki.tfes.org/Ring_Laser_Gyroscope#Raw_Data]</sup> and dwarf the results from rotation. The device is affected by effects which are not the rotation of the Earth. If there are effects from unknown sources in the experiment and the desired effect must be pulled out with statistics, then one may suggest that it is not possible to indicate which effect comes from what phenomena. It could be an oscillation from another diurnal phenomena which is affecting the device.
By David Titterton, John L. Weston, John Weston
 
  
From [http://read.pudn.com/downloads165/ebook/756655/Strapdown%20Inertial%20Navigation%20Technology/13587_15c.pdf Chapter 15.6] on p.497
+
==Ring Interferometer==
  
{{cite|The Fourier transform of the output from the laser cavity gives a spectral line associated with the rotation of the Earth often termed 'the Earth line'. Analysis of this spectral line is used to monitor the impact of seismic waves and other events. This ability to make high-precision measurements of rotation rates has led to applications in geodesy.}}
+
Micheson-Gale was a ring interferometer and the basis for all ring interferometers to come after this experiment. Its [https://en.wikipedia.org/wiki/Michelson%E2%80%93Gale%E2%80%93Pearson_experiment Wikipedia article says:]
  
p.498
+
{{cite|The Michelson-Gale experiment was a very large ring interferometer, (a perimeter of 1.9 kilometer)}}
  
{{cite|The effect of seismic events is to induce frequency-modulated side bands, in the 0.2-1 Hz region, around the 'Earth line', which indicate the presence of rotational components associated with seismic events.}}
+
The second slide in a presentation titled "Ring Laser Gyroscope Measurement of Absolute Earth Rotation" introduces the Michelson-Gale experiment as basis for the Ring Laser Gyroscope:
  
===University of Canterbury===
+
'''Ring Laser Gyroscope Measurement of Absolute Earth Rotation'''<br>
 +
3rd International Workshop on Rotational Seismology
  
In a PhD thesis by B Tom King it is admitted that the nature of the Earth induced line is unknown and unverified. From p.152 we read:
+
https://slideplayer.com/slide/10532529/ ([https://web.archive.org/web/20200616180741/http://player.slideplayer.com/download/36/10532529/Obqm-n4MgUsxkealMUoEVg/1592334243/10532529.ppt Archive .ppt])
  
{{cite|While lasing in single longitudinal mode and unlocked under the Earth's rotation a Lissajous figure is generated on an oscilloscope with the Sagnac signal from G0 on the x-axis and a sinusoid (from a signal generator) on the y-axis. The figure can be made stationary by varying the frequency of the generated signal. Once achieved this becomes an extremely sensitive detector of phase shifts in the G0 output. A variety of tests can then be performed. Artificial seismic events are easily detected as a jitter in the Lissajous figure. Also the introduction of a magnetic field near the gain medium has the effect of shifting the beat frequency and hence causes the Lissajous figure to rotate at a constant rate. '''However, the question remains as to whether or not this signal is necessarily the Earth induced line. It is difficult to impose a rotation on the laser as it is rigidly mounted to a solid concrete wall which in turn is moulded around the solid volcanic rock that forms the interior cavern wall. It is conceivable that the signal can be traced back to some oscillation in the gain medium. This problem is yet to be clarified.'''}}
+
[[File:Michelson-Gale.png|700px]]
  
It is admitted that the nature of the earth line is unknown and that the signal may be traced back to some oscillation in the gain medium. The reader may ponder how it would be at all possible for a directly observed rotation rate of 15 degrees per hour beneath a device could be traced back to an "oscillation in the gain medium" and why it is called a "signal". This confirms that that the matter is actually a measurement of anthropogenic and microseismic noises, and not a direct measurement of rotation beneath the device as some have alleged.
+
==Further Reference==
  
The author goes on to deduce that because the earth induced line agrees with an equation, it is assumed that the rate is indeed from the earth.
+
:*[https://www.europhysicsnews.org/articles/epn/pdf/2017/04/epn2017484p25.pdf Ring Lasers - a brief history] ([https://web.archive.org/web/20190611180957/https://www.europhysicsnews.org/articles/epn/pdf/2017/04/epn2017484p25.pdf Archive]) - Describes that the Ring Laser Gyroscope is a Sagnac/MGP device.
  
{{cite|However, it is assumed that the signal is indeed the Earth induced rate mostly because of the excellent agreement between the measured output frequency (see Figs. 6. 7 and 6.8) and the expected frequency of 287. 75 ± 0.46 Hz.}}
+
=Raw Data=
  
"Excellent agreement" with an equation which was likely made to match observation, after the fact and after the invention of the device.
+
==Honeywell Ring Laser Gyro==
  
On p.152 of the paper which discusses the theory of the equations, it is shown that the rotation rate of the earth involves the period of 86164s applied to the interpetation, which is the Sierael Day. The equation is using a predefined period to assess a daily variation in the noise.
+
From a paper titled [https://apps.dtic.mil/dtic/tr/fulltext/u2/a266418.pdf Performance Evaluation of the Honeywell GG1308 Miniature Ring Laser Gyroscope] ([https://web.archive.org/web/20191024205446/https://apps.dtic.mil/dtic/tr/fulltext/u2/a266418.pdf Archive]) we find raw data (RLG Cnts) which includes the Earth rate:
  
[[File:Siderial day rotation rate.png|500px]]
+
''2.3 GRAPHICAL REPRESENTATION''
  
The 'Sidreal Day' happens to be the time it takes for the sun, stars, and celestial bodies to return to their spots above the earth. This is opposed to the Solar Day, which is supposedly the true rotation of the earth, and is in regards to the sun.
+
{{cite|Figure 2-2 shows graphical representations of typical
 +
raw gyro outputs. The family of graphs (a) thru (e)
 +
illustrate the RLG counts and analog parameters for a bias
 +
drift test that includes local Earth rate with strobing at a
 +
nominal 10 seconds. The initial part of the traces show the
 +
RLG turn-on transient with a RLG Count settling time of
 +
approximately one minute. One should note that it takes
 +
more than five minutes for the temperature and the PLC
 +
controller to settle. Three PLC shifts occur during this
 +
turn-on temperature transient. Even though the RLG fixture
 +
is temperature controlled to better than 0.1 0C it is shown
 +
in Fig. 2-2e that after turn-on the internal temperature of
 +
the RLG rises by 4 to 4.5 0 C before settling out.}}
  
==Seismic Wave Propagation==
+
[[File:Honeywell RLG1.png|600px]] [[File:Honeywell RLG2.png|600px]]
  
===Background Noise===
+
==MEMS Gyroscope==
  
From http://microglacoste.com/gPhoneNoise/gPhoneSeismicNoise.pdf we read:
+
Similarly, raw data from Section 4.1 of a paper titled '''''[http://www.tkt.cs.tut.fi/research/nappo_files/Symposium_Gyro_Technology_2010_web.pdf Measuring the Earth’s Rotation Rate Using a Low-Cost MEMS Gyroscope]''''' ([https://web.archive.org/web/20191024195012/http://www.tkt.cs.tut.fi/research/nappo_files/Symposium_Gyro_Technology_2010_web.pdf Archive]), which uses another kind of gyroscope to detect the Earth's rotation, shows that the raw data is inconsistent and noisy. The Earth's rotation is pulled out of noise.
  
{{cite|It is interesting to speculate on the precise origin of the background seismic noise. Haubrich et al ii for example, open their article with the following description of the seismic noise background and the large interest it has generated over the years as well as the intractability of its investigation:
+
{{cite|During the measurements the gyroscope was stationary on the floor. Its positive sensitive axis was parallel to the local horizontal plane. Total data collection time of the experiment spans to approximately 61 hours. The raw data collected directly from the sensor is shown in Figure 2 as a function of time.}}
  
The low‐level background unrest of the earth, called microseisms or earth noise, has puzzled seismologists and other scientists for nearly a century. The problem of its nature and causes has proved particularly unyielding, not, however, for lack of investigation. A bibliography covering work up to 1955 [Gutenberg and Andrews, 1956] iii lists over 600 articles on the subject; one covering the years from 1955 to 1964 [Hjortenberg, 1967] iv lists 566. Unfortunately, much of this work has advanced the subject but slightly.}}
+
[[File:MEMS Gyro Raw.png|500px]]
  
===Airborne Transmission===
+
If one were to directly conclude that the movement is due to the rotation of the earth, one would also have to conclude that much of the data involves the earth 'spinning' backwards from its supposed direction. In truth, the noise seen is caused by other effects which are not the earth's rotation, subverting the results. Only through noise analysis is the the Earth's rotation interpreted and pulled out with an algorithm. It is through the ''interpretation of noise'' that the Earth's rotation is found.
  
https://en.wikipedia.org/wiki/Seismic_wave
+
=Addendum=
  
{{cite|Primary waves (P-waves) are compressional waves that are longitudinal in nature. P waves are pressure waves that travel faster than other waves through the earth to arrive at seismograph stations first, hence the name "Primary". These waves can travel through any type of material, including fluids, and can travel nearly 1.7 times faster than the S waves. In air, they take the form of sound waves, hence they travel at the speed of sound. Typical speeds are 330 m/s in air, 1450 m/s in water and about 5000 m/s in granite.}}
+
According to the RE interpretation the earth is rotating and giving consistent results. There are other secondary mechanisms modifying and dominating those results. Due to the range seen, these secondary mechanisms are ''also'' somehow related to the speed of the Earth's rotation. It is from these mysterious mechanisms that the rotation of the earth is ''indirectly'' pulled out of the noise with an algorithm.
  
https://amp.livescience.com/24209-earthquakes-infrasound.html
+
Alternatively, we may interpret this as ''one'' mechanism which is creating that range of results, and which is related to the diurnal period of the sun, tides, or celestial bodies which move over the earth. Should it be unreasonable that a very sensitive device can detect a background oscillation of the world in the noise it detects? Whether the responsible mechanism is seismic, pressure, or 'aether' related, we know by the direct evidence of inconsistency that the results are modifiable by a mechanism present in the experiment which is not the rotation of the earth. If it is modifiable then it is also entirely createable.  
  
{{cite|As earthquake waves ripple through the Earth, the crust buckles, rumbles and roars — both audibly and at infrasonic frequencies, below the range of human hearing. '''A new study finds the Earth's surface acts like a speaker for low-frequency vibrations, transmitting an earthquake's infrasonic tumult into the air.'''}}
+
We should ponder whether an inconsistent experiment has ever been a proof of anything in science. As the experiment is tainted by uncontrolled and unmitigated effects which drastically affects the device, one can only conclude that it is unclear as to what is being measured, what effects are involved, and whether there is even a constant baseline beneath it all; negating any statistical conclusions and thus demonstrating that the device is not decisive evidence for the rotation of the Earth.
 +
 
 +
==Next: RLG Seismology==
 +
 
 +
While inconsistent experiments are typically invalid as demonstration of any particular cause, one potential contributor of the noise in these very sensitive devices is the seismic disturbance inherent in the background environment. Unlike earth rotation, seismic disturbance is not a constant phenomenon. This page continues onto: '''[[Ring Laser Gyroscope - Seismology]]'''
 +
 
 +
==Related==
 +
 
 +
:*'''[[Mechanical Gyroscope]]''' - In contradiction, the mechanical gyroscopes does not show rotation to the earth
 +
 
 +
==See Also==
 +
 
 +
''Flat Earth Topics on Rotation and Revolution''
 +
 
 +
:*'''[[Michelson-Morley Experiment]]''' - Light velocity experiment which suggests a lack of Earth's motion around the Sun
 +
:*'''[[Sagnac Experiment]]''' - Experiments which show that light's velocity is indeed affected by detector motion
 +
:*'''[[Airy's Failure]]''' - An experiment which suggests that the stars are in motion, rather than the Earth
 +
:*'''[[Time Dilation by Latitude]]''' - The predicted time dilation caused by Earth's rotation does not occur
 +
:*'''[[Aviation]]''' - Mechanical air flight assumes a flat, non-rotating Earth
 +
 
 +
''Round Earth Topics on Rotation''
 +
 
 +
:*'''[[Foucault Pendulum]]''' - Pendulum device which is alleged to detect the rotation of Earth
 +
:*'''[[Coriolis Effect]]''' - Eastwards deflection of bodies caused by Earth's rotation
 +
:*'''[[Coriolis Effect (Weather)]]''' - Hurricanes and other effects due to Earth's rotation
 +
:*'''[[Ring Laser Gyroscope]]''' - Ring laser experiment alleged to observe the rotation of Earth
 +
 
 +
''Related''
 +
 
 +
:*'''[[Michelson-Gale-Pearson Experiment]]'''
 +
 
 +
[[Category:General Physics]]
 +
[[Category:Rotation and Revolution]]
 +
[[Category:Relativity]]

Revision as of 21:03, 19 January 2022

The Ring Laser Gyroscope (RLG) is a consumer device version of the Michelson-Gale-Pearson Experiment (MGP)[1]. The principle of operation of these devices is based on the Sagnac Effect, which was famed for showing that light changes velocity on a rotating platform. In the RLG and MGP experiment the Earth is used as the 'rotating platform'. Like with the Michelson-Gale-Pearson Experiment, some have alleged that Ring Laser Gyroscopes have detected the rotation of the earth.

From a work titled The Sagnac and Michelson-Gale-Pearson Experiments (Archive) by Dr. Paulo N. Correa we read on p.5:

  “ The outcome of the MGP experiment was ambiguous, though maybe no more ambiguous than the small persistent positive shift observed in MM experiments. Composed of 269 separate tests with readings that varied from -0.04 to +0.55 of a fringe, and a mean at +0.26 fringes, the MGP experiment could be interpreted to yield a positive result of ≈ 0.3 km/s - therefore near the speed of the earth's rotation, but the result was of borderline significance. It could be said that the experiment was inconclusive because it adduced neither proof that there was a shift in the phase of the light beams, nor that there wasn't one. ”

Essentially the tests saw wild results. There was almost no change to light's velocity in one test, and then a lot of change in another test. It is perplexing that the rotation of the earth would start and stop when tested at different times. Only through the statistics was it claimed that the experiment saw the rotation of the earth. The inconsistent results were ambiguous in nature and could offer no evidence of the shift in the phase of the light beams. As stated above, the results of the Michelson-Gale-Pearson experiment were inconsistent and an algorithm was applied to get the desired result. If we are to say that the Ring Laser Gyroscope is the same device, then the same criticism would apply.

It is further seen that, like the original MGP experiment, the raw results of the gyroscopes are inconsistent[2] and dwarf the results from rotation. The device is affected by effects which are not the rotation of the Earth. If there are effects from unknown sources in the experiment and the desired effect must be pulled out with statistics, then one may suggest that it is not possible to indicate which effect comes from what phenomena. It could be an oscillation from another diurnal phenomena which is affecting the device.

Ring Interferometer

Micheson-Gale was a ring interferometer and the basis for all ring interferometers to come after this experiment. Its Wikipedia article says:

  “ The Michelson-Gale experiment was a very large ring interferometer, (a perimeter of 1.9 kilometer) ”

The second slide in a presentation titled "Ring Laser Gyroscope Measurement of Absolute Earth Rotation" introduces the Michelson-Gale experiment as basis for the Ring Laser Gyroscope:

Ring Laser Gyroscope Measurement of Absolute Earth Rotation
3rd International Workshop on Rotational Seismology

https://slideplayer.com/slide/10532529/ (Archive .ppt)

Michelson-Gale.png

Further Reference

Raw Data

Honeywell Ring Laser Gyro

From a paper titled Performance Evaluation of the Honeywell GG1308 Miniature Ring Laser Gyroscope (Archive) we find raw data (RLG Cnts) which includes the Earth rate:

2.3 GRAPHICAL REPRESENTATION

  “ Figure 2-2 shows graphical representations of typical raw gyro outputs. The family of graphs (a) thru (e) illustrate the RLG counts and analog parameters for a bias drift test that includes local Earth rate with strobing at a nominal 10 seconds. The initial part of the traces show the RLG turn-on transient with a RLG Count settling time of approximately one minute. One should note that it takes more than five minutes for the temperature and the PLC controller to settle. Three PLC shifts occur during this turn-on temperature transient. Even though the RLG fixture is temperature controlled to better than 0.1 0C it is shown in Fig. 2-2e that after turn-on the internal temperature of the RLG rises by 4 to 4.5 0 C before settling out. ”

Honeywell RLG1.png Honeywell RLG2.png

MEMS Gyroscope

Similarly, raw data from Section 4.1 of a paper titled Measuring the Earth’s Rotation Rate Using a Low-Cost MEMS Gyroscope (Archive), which uses another kind of gyroscope to detect the Earth's rotation, shows that the raw data is inconsistent and noisy. The Earth's rotation is pulled out of noise.

  “ During the measurements the gyroscope was stationary on the floor. Its positive sensitive axis was parallel to the local horizontal plane. Total data collection time of the experiment spans to approximately 61 hours. The raw data collected directly from the sensor is shown in Figure 2 as a function of time. ”

MEMS Gyro Raw.png

If one were to directly conclude that the movement is due to the rotation of the earth, one would also have to conclude that much of the data involves the earth 'spinning' backwards from its supposed direction. In truth, the noise seen is caused by other effects which are not the earth's rotation, subverting the results. Only through noise analysis is the the Earth's rotation interpreted and pulled out with an algorithm. It is through the interpretation of noise that the Earth's rotation is found.

Addendum

According to the RE interpretation the earth is rotating and giving consistent results. There are other secondary mechanisms modifying and dominating those results. Due to the range seen, these secondary mechanisms are also somehow related to the speed of the Earth's rotation. It is from these mysterious mechanisms that the rotation of the earth is indirectly pulled out of the noise with an algorithm.

Alternatively, we may interpret this as one mechanism which is creating that range of results, and which is related to the diurnal period of the sun, tides, or celestial bodies which move over the earth. Should it be unreasonable that a very sensitive device can detect a background oscillation of the world in the noise it detects? Whether the responsible mechanism is seismic, pressure, or 'aether' related, we know by the direct evidence of inconsistency that the results are modifiable by a mechanism present in the experiment which is not the rotation of the earth. If it is modifiable then it is also entirely createable.

We should ponder whether an inconsistent experiment has ever been a proof of anything in science. As the experiment is tainted by uncontrolled and unmitigated effects which drastically affects the device, one can only conclude that it is unclear as to what is being measured, what effects are involved, and whether there is even a constant baseline beneath it all; negating any statistical conclusions and thus demonstrating that the device is not decisive evidence for the rotation of the Earth.

Next: RLG Seismology

While inconsistent experiments are typically invalid as demonstration of any particular cause, one potential contributor of the noise in these very sensitive devices is the seismic disturbance inherent in the background environment. Unlike earth rotation, seismic disturbance is not a constant phenomenon. This page continues onto: Ring Laser Gyroscope - Seismology

Related

  • Mechanical Gyroscope - In contradiction, the mechanical gyroscopes does not show rotation to the earth

See Also

Flat Earth Topics on Rotation and Revolution

  • Michelson-Morley Experiment - Light velocity experiment which suggests a lack of Earth's motion around the Sun
  • Sagnac Experiment - Experiments which show that light's velocity is indeed affected by detector motion
  • Airy's Failure - An experiment which suggests that the stars are in motion, rather than the Earth
  • Time Dilation by Latitude - The predicted time dilation caused by Earth's rotation does not occur
  • Aviation - Mechanical air flight assumes a flat, non-rotating Earth

Round Earth Topics on Rotation

Related