The Flat Earth Wiki
The Flat Earth Wiki
Log in

Electromagnetic Acceleration

From The Flat Earth Wiki
(Redirected from Electromagnetic Accelerator)

The theory of the Electromagnetic Accelerator (EA) states that there is a mechanism to the universe that pulls, pushes, or deflects light upwards. All light curves upwards over very long distances. The Electromagnetic Accelerator has been adopted as a modern alternative to the perspective theory proposed in Earth Not a Globe.

Sunrise and sunset happen as result of these upwardly curving light rays.

Electromagnetic Accelerator.gif

The above illustration depicts rays from the Sun which intersect with the earth. Other rays not depicted may miss the earth and make a "u-turn" back into space.

It is believed that the bending of light does not simulate or match the globe curvature. Instead, the bending occurs more gradually over a greater distance. This is why observers can see further than they should in the classic Flat Earth water convexity experiments that take place on shorter ranges near sea level, and why the dip of the horizon at higher altitudes over longer ranges sits higher than the globe earth prediction but lower than a planar prediction (See: High Altitude Horizon Dip).


One may point out that it would be quite unreasonable to assert that a particle or wave in motion would travel forever through the universe in a perfectly straight line, unperturbed by any of the variety of forces or phenomena which fills existence. Get into a car and attempt to drive in a perfectly straight line down a highway without turning the steering wheel left or right. It is a near impossible thing to do. The car is affected by the slope and texture of the terrain, alignment of your wheels, the wind, &c. An apparently straight heading turns into a curved one. When it comes to bullets, airplanes, et all, it is expected that bodies never realistically travel straightly. Straight line trajectories rarely, if ever, occur in nature.

While the mechanism which affects light over long distances is not known, the cosmological theme of upwards acceleration fits in with this Flat Earth model.


As there has been a long wait for a conclusive equation describing the Electromagnetic Acceleration theory, an approximate formula for large-scale bending has been authored and proposed by Parsifal. This is a limit of a more complex (and not yet final) expression as x approaches infinity, so this will only work when y is much greater than x - that is to say, when the vertical distance travelled is much greater than the horizontal distance travelled. Put another way, its accuracy will improve the closer the light ray is to vertical. Therefore, while it is not valid for short-range experiments, it can give an idea of how much sunlight would bend on its way to the Earth, for instance.

Credit: Parsifal

Where (0,0) is understood to be the point at which the light ray is horizontal (that is, the derivative of this function is zero).

Definition of terms:

x, y - co-ordinates in the plane of the light ray, where y is increasing in the direction of fastest decreasing Dark Energy potential, and x is increasing in the direction of the component of propagation of the ray which is perpendicular to y.

c - the speed of light in a vacuum.

β - the Bishop constant, which defines the magnitude of the acceleration on a horizontal light ray due to Dark Energy. When the theory is complete, attempts will be made to measure this experimentally.

Articles of Interest


Clouds Lit From Underside

Rays which miss the earth will turn back up into space, and may hit the underside of clouds before sunrise or after sunset, giving them a reddish glow.

Credit: Bobby Shafto

Horizon Dip

The Electromagnetic Accelerator predicts that at high altitudes where one can see further into the distance, the horizon will dip below eye level. Light which travels parallel from the limits of vision will be pulled upwards and miss the eye of the observer. The rays the observer will see are those rays which are transmitted at a lower angle and pulled upwards to meet the observer, resulting in a horizon which is slightly below eye level.



Nearside Always Seen

A consequence of this paradigm of upwardly bending light is that the observer will always see the nearside (underside) of the celestial bodies. The below image depicts the extremes of the Moon's rising and setting. The image of the nearside face of the Moon is bent upwards around the Moon and faces the observers to either side of it.

Concept: Pete Svarrior

This scheme also predicts that the image of the Moon will be flipped upside-down between rising and setting, or as seen in the North and South.

Lunar Phases

When one observes the phases of the Moon they are seeing the Moon's day and night, a shadow created from the Sun illuminating half of the spherical Moon at any one time. As depicted in the previous section, due to EA we are always observing the nearside (or underside) of the Moon.

The curved rays of the Sun results in the phases upon the Moon's surface. The plane of the Moon's route is at an inclination to the plane of the Sun's ecliptic, with its highest side opposite from the Sun. When the Moon is far from the Sun and higher than it, the Full Moon occurs. When the Moon is closer to the Sun and lower than it, the New Moon occurs1. The Moon moves at a slightly slower rate than the Sun across the sky, causing the range of phases. The time between two Full Moons, or between successive occurrences of the same phase, is about 29.53 days (29 days, 12 hours, 44 minutes) on average.

Sample large-scale Sun ray diagram (side view):


Concept: Curious Squirrel, totallackey

Moon Position Table

Compare the above with the following table from Cornell University (Archive), which provides a rule-of-thumb summation for when the Moon rises and sets during its phases:

Moon phase Moonrise Moonset
New Sunrise Sunset
1st quarter Local noon Local midnight
Full Sunset Sunrise
3rd quarter Local midnight Local noon

1 Around the time of the New Moon the Moon is not technically seen. According to Kean University (Archive):   “ The New Moon begins the lunar cycle. The age of the Moon in a lunar cycle is measured from the time of New Moon. At New Moon the Earth, Moon and Sun are lined up. Because of the glare of the Sun, the Moon cannot be seen for a few days. After about 3 days, it is possible to see a thin crescent in the West or Southwest at sunset. ”

Moon Tilt Illusion

The Electromagnetic Accelerator is able to make unique predictions and predict phenomena that the Round Earth Theory does not. If the Sun is illuminating the Moon under straight line geometry, such as in RET, then it would be expected that the illuminated portion of the Moon will always point at the Sun, much like how when shining a flashlight at a ball the illuminated portion of the ball will always appear to point at the flashlight to observers positioned around the ball. It is natural and expected that the illuminated portion of a body will appear to point at its light source. Because the image of the Moon's nearside face is flipped to observers due to Electromagnetic Acceleration, however, the illuminated portion of the Moon will often be seen to point away from the Sun.

See the Moon Tilt Illusion

Celestial Sphere

Electromagnetic Acceleration predicts that our observations would appear as if we were inside of a dome. And indeed, this is what we experience. Straight line geometry stops working in the distance. When looking out over large distances it appears as if we are on the inside of a planetarium where straight lines become curved on a dome surface. Astronomers acknowledge this effect and attribute the phenomena to the celestial sphere, which assumes that our celestial observations are projected onto a sphere around the observer.

See the Celestial Sphere

See Also