The Flat Earth Wiki
The Flat Earth Wiki
Log in

Difference between revisions of "The Lunar Eclipse"

From The Flat Earth Wiki
Line 1: Line 1:
A '''Lunar Eclipse''' occurs about twice a year when a satellite of the sun passes between the sun and moon.
+
The Lunar Eclipse is a phenomenon which occurs two to five times a year, when a darkened area appears on the surface of the Moon. Unlike the Solar Eclipse which is seen from only a small strip of land on the Earth's surface, the Lunar Eclipse is an event which seen by anyone who can see the Moon in their sky.
  
This satellite is called the Shadow Object or Antimoon. Its orbital plane is tilted at an angle to the sun's orbital plane, making eclipses possible only when the three bodies (Sun, Object, and Moon) are aligned. Within a given year a maximum of three lunar eclipses can occur. Despite the fact that there are more solar than lunar eclipses each year, over time many more lunar eclipses are seen at any single location on earth than solar eclipses. This occurs because a lunar eclipse can be seen from the entire half of the earth beneath the moon at that time, while a solar eclipse is visible only along a narrow path on the earth's surface.
+
==Proposed Mechanisms==
  
Total lunar eclipses come in clusters. There can be two or three during a period of a year or a year and a half, followed by a lull of two or three years before another round begins. When you add partial eclipses there can be three in a calendar year and again, it's quite possible to have none at all.
+
===Electromagnetic Acceleration===
  
The shadow object is never seen in the sky because it orbits the sun on the ''day'' side of the earth, in the large vicinity where celestial bodies are invisible. As the sun's powerful vertical rays hit the atmosphere during the day they will scatter and blot out nearly every single star and celestial body in the daytime sky. We are never given a glimpse of the celestial bodies which appear near the sun during the day - they are completely washed out by the sun's light. In fact, when the daytime Moon gets too close to the sun's vicinity it will completely disappear from sight. Except for during the time of Solar Eclipse, the Moon is only seen during the day at a far opposite side of the sky from the sun.
+
Under the celestial model of [[Electromagnetic Acceleration]] the Sun's rays of light are bending in parabolic arcs upwards in directions around it. The phases between New Moon and Full Moon are caused by the angle of rays against the Moon at different positions in proximity to the Sun. The Lunar Eclipse occurs when the Moon occasionally moves beyond the boundary edge of sunlight.
  
Dr. [[Samuel Birley Rowbotham]] has provided equations for finding the time, magnitude, and duration of a Lunar Eclipse at the end of [http://www.sacred-texts.com/earth/za/za29.htm Chapter 11] of [[Earth Not a Globe]].
+
See '''[[Lunar Eclipse due to Electromagnetic Acceleration]]'''
  
There is also a possibility that the Shadow Object is a ''known'' celestial body which orbits the sun, and which projects its shadow upon the moon; but more study would be needed to track the positions of Mercury, Venus and the sun's asteroid satellites and correlate them with the equations for the lunar eclipse before any conclusion could be drawn.
+
===Shadow Object===
  
==Celestial Bodies Not Visible==
+
In the past it has been suggested that there may be an unseen celestial body which moves around the Sun, located over the daylight side of the Earth, which occasionally intersects the light of the Sun and Moon to cause the eclipse.
  
During the day the celestial bodies near the sun are invisible. An example of this is seen in the appearance of the Moon during the Solar Eclipse. The Moon seems to appear out of nowhere to intersect the Sun.
+
See '''[[Lunar Eclipse due to Shadow Object]]'''
  
[[File:Partial-solar-eclipse.gif]]
+
==Prediction==
  
Another example of the sky-colored moon is seen in the [https://www.timeanddate.com/eclipse/solar/2017-august-21 timeanddate.com Solar Eclipse simulations].
+
Prediction in astronomy is generally achieved through assessment of patterns. Astronomers use cycles to predict the recurrence of the eclipses.
  
==Ancient and Modern Astronomers==
+
See: '''[https://wiki.tfes.org/Astronomical_Prediction_Based_on_Patterns#The_Eclipses Astronomical Prediction Based on Patterns - The Eclipses]'''
 
 
The reason the ancient societies such as the Greeks and Babylonians were able to predict the Lunar Eclipses was because the predictions are based on recurring charts and tables of past eclipses. Modern Astronomers still use the same pattern prediction methods. It had nothing to do with the shape of the earth or the actual geometry of the system. The Lunar Eclipse is a phenomenon which comes in patterns. By studying these patterns it is possible to predict when the next transit or eclipse will occur. The astronomer can use historic charts and tables with a few equations to predict the time, magnitude, and duration of a future eclipse.
 
 
 
This does not apply only to the eclipse, either: All recurring phenomena such as the transits of planets, occultations of bodies, and precision of paths across the sky are predicable only because they are phenomena which come in patterns. Astronomers predict celestial events by studying the patterns and predicting when the next occurrence will occur.
 
 
 
See: [[Astronomical Prediction Based on Patterns]]
 
 
 
==Modern Eclipse Models==
 
 
 
'''Q'''. But what about NASA's yearly lunar eclipse predictions? They must be based on a geometric model, and not simply cycles in the sky, surely?
 
 
 
'''A'''. NASA freely admits that they use ancient cycle charts for their eclipse predictions. The Saros Cycle and those cobby old ancient methods which simply look at past patterns in the sky to predict the next one is precisely how "modern theorists" predict the lunar eclipse today.
 
 
 
See: [[Astronomical_Prediction_Based_on_Patterns#The_Eclipses|Astronomical Prediction Based on Patterns - The Eclipses]]
 
 
 
==Why the Lunar Eclipse is Red==
 
 
 
One explanation is that the Lunar Eclipse is red because the light of the sun is shining through the body of the Shadow Object which passes between the Sun and Moon during a Lunar Eclipse. The red tint occurs because the Shadow Object is not sufficiently dense. The Sun's light is powerful enough to shine through the Shadow Object, just as a flashlight is powerful enough to shine through your hand when you put it right up against your palm.
 
 
 
[[File:2007-03-03 - Lunar Eclipse small-43img.gif|350x]]
 
 
 
=External links=
 
*[http://books.google.com/books?id=GzkKAAAAIAAJ&pg=PA#PPA74,M1 Zetetic Cosmogony chapter on the Lunar Eclipse]
 
*[http://www.personalityresearch.org/metatheory/flatearth.html Why the Earth may really be flat]
 
 
 
[[Category:Cosmos]]
 
[[Category:Moon]]
 

Revision as of 16:59, 9 April 2020

The Lunar Eclipse is a phenomenon which occurs two to five times a year, when a darkened area appears on the surface of the Moon. Unlike the Solar Eclipse which is seen from only a small strip of land on the Earth's surface, the Lunar Eclipse is an event which seen by anyone who can see the Moon in their sky.

Proposed Mechanisms

Electromagnetic Acceleration

Under the celestial model of Electromagnetic Acceleration the Sun's rays of light are bending in parabolic arcs upwards in directions around it. The phases between New Moon and Full Moon are caused by the angle of rays against the Moon at different positions in proximity to the Sun. The Lunar Eclipse occurs when the Moon occasionally moves beyond the boundary edge of sunlight.

See Lunar Eclipse due to Electromagnetic Acceleration

Shadow Object

In the past it has been suggested that there may be an unseen celestial body which moves around the Sun, located over the daylight side of the Earth, which occasionally intersects the light of the Sun and Moon to cause the eclipse.

See Lunar Eclipse due to Shadow Object

Prediction

Prediction in astronomy is generally achieved through assessment of patterns. Astronomers use cycles to predict the recurrence of the eclipses.

See: Astronomical Prediction Based on Patterns - The Eclipses